Biosynthesis of Stable Antioxidant ZnO Nanoparticles by Pseudomonas aeruginosa Rhamnolipids

نویسندگان

  • Brahma Nand Singh
  • Ajay Kumar Singh Rawat
  • Wasi Khan
  • Alim H. Naqvi
  • Braj Raj Singh
چکیده

During the last several years, various chemical methods have been used for synthesis of a variety of metal nanoparticles. Most of these methods pose severe environmental problems and biological risks; therefore the present study reports a biological route for synthesis of zinc oxide nanoparticles using Pseudomonas aeruginosa rhamnolipids (RLs) (denoted as RL@ZnO) and their antioxidant property. Formation of stable RL@ZnO nanoparticles gave mostly spherical particles with a particle size ranging from 35 to 80 nm. The RL@ZnO nanoparticles were characterized by UV-visible (UV-vis) spectroscopy, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis. The UV-vis spectra presented a characteristic absorbance peak at ∼ 360 nm for synthesized RL@ZnO nanoparticles. The XRD spectrum showed that RL@ZnO nanoparticles are crystalline in nature and have typical wurtzite type polycrystals. Antioxidant potential of RL@ZnO nanoparticles was assessed through 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, and superoxide anion free radicals with varying concentration and time of the storage up to 15 months, while it was found to decline in bare ZnO nanoparticles. Similarly, the inhibitory effects on β-carotene oxidation and lipid peroxidation were also observed. These results elucidate the significance of P. aeruginosa RL as effective stabilizing agents to develop surface protective ZnO nanoparticles, which can be used as promising antioxidants in biological system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440

BACKGROUND Although a transition toward sustainable production of chemicals is needed, the physiochemical properties of certain biochemicals such as biosurfactants make them challenging to produce in conventional bioreactor systems. Alternative production platforms such as surface-attached biofilm populations could potentially overcome these challenges. Rhamnolipids are a group of biosurfactant...

متن کامل

Synthesis of biosurfactant-based silver nanoparticles with purified rhamnolipids isolated from Pseudomonas aeruginosa BS-161R.

The biological synthesis of nanoparticles has gained considerable attention in view of their excellent biocompatibility and low toxicity. We isolated and purified rhamnolipids from Pseudomonas aeruginosa strain BS-161R and these purified rhamnolipids were used to synthesize silver nanoparticles. The purified rhamnolipids were further characterized and the structure was elucidated based on one- ...

متن کامل

Inhibitory effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation

Objective(s): Bacterial biofilm formation causes many persistent and chronic infections. The matrix protects biofilm bacteria from exposure to innate immune defenses and antibiotic treatments. The purpose of this study was to evaluate the biofilm formation of clinical isolates of Pseudomonas aeruginosa and the activity of zinc oxide nanoparticles (ZnO NPs) on biofilm. Materials and Methods: Aft...

متن کامل

Evaluation of Antibacterial Activity of ZnO and TiO2 Nanoparticles on Planktonic and Biofilm Cells of Pseudomonas aeruginosa

In this study antimicrobial activity of ZnO nanoparticles and TiO2 nanoparticles on the most common pathogen bacterium Pseudomonas aeruginosa was evaluated. P. aeruginosa is one of the prevalent pathogen that caused nosocomial infection. It is generally multi-drug resistant. Pseudomonas aeruginosa (ATCC 27853) were cultured on nutrient agar medium (NA) for 24h at 37°C. TiO2 and ZnO nanoparticle...

متن کامل

Anti-biofilm effect of peppermint extract on Pseudomonas aeruginosa that isolated of hospitalized patients in Tabriz city

Introduction Green biosynthesis of the metallic nanoparticles is considered as one of the effective method for cancer treatment with minimum side effects. The objective of this study was the evaluation of cytotoxicity of zinc oxide (ZnO) nanoparticles synthesized with Ceratonia siliqua extract on the breast cancer cells and assessment of anti-angiogenesis properties of these nanoparticles in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014